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Abstract
This work is concerned with the behaviour of a regular 2D rectangular lattice
of Ni3Fe nanoparticles, determined by the dipole interaction between them.
The samples under study, prepared by electron-beam lithography, consisted of
about 105 particles approximately 50 nm in size. The magnetization curves were
studied by Hall magnetometry for different external magnetic field orientations
at 4.2 K and 77 K. The results indicate a collective behaviour of the system.
The magnetization curves depend on the external magnetic field direction and
temperature; the system exhibits multistability. A model system of interacting
3D magnetic dipoles forming a rectangular lattice was numerically simulated
by solving a system of stochastic Landau–Lifshitz equations. The multistability
of the system and steps in the magnetization curves were obtained. It is shown
analytically that the shape of the magnetization curves depends on the character
of the interaction in the system.

1. Introduction

The interest in systems of nanosize magnetic particles arises from their potential as ultrahigh-
density magnetic recording media. It is assumed that each particle carries one bit of information
and the maximum density of data recording can be made as high as 1010 bit cm−2. There are
two basic limitations on the geometrical dimensions of such systems. First, the particle size
must not to be too small, since the lifetime of a particle with an imparted magnetic moment is
∼ exp(KV/kT ), where K is the energy density of the magnetic anisotropy, V is the particle
volume, T is the temperature and k is the Boltzmann constant. The effect of the thermoinduced
rotation of the magnetic moment of a particle was termed superparamagnetism. Second,
the energy of the particle interaction in a recording medium must be much smaller than the
energy of the magnetic anisotropy. Otherwise, the particles show a collective behaviour. One
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fundamental type of interaction between single-domain particles, which can lead to a collective
behaviour, is the dipole interaction. The energy of the two-particle interaction has the form

E = 1

2

∑
Dik(x − y)Mi(x)Mk(y) Dik(x) = δik

x3
− 3xixk

x5
(1)

where Mi(x) is ith component of the magnetic moment of a particle at point x. It follows from
(1) that, to reduce the interaction energy, one has to make the interparticle distance longer.

By contrast, if there is a strong interaction in a system of supermagnetic particles, a
situation is possible where the system becomes ordered. Such a state of the system has been
named supermagnetic [1]. Owing to the anisotropic nature of the dipole interaction (1), the type
of long-range order existing in the ground state strongly depends on the lattice parameters [2].
For example, two-dimensional lattices with a rhombic unit cell may have a ground state with a
ferromagnetic or antiferromagnetic type of ordering, depending on a rhombicity angle [3]. This
means that, by varying the 2D lattice symmetry, particle size and interparticle distance, one can,
in principle, create magnetic structures with prescribed properties. The critical temperature of
disordering

Tc � M2
0 V 2/R3 (2)

depends on the characteristic value of the dipole interaction between particles and equals about
100 K for typical values of magnetization M0 � 1000 G, V � 10−18 cm3 and interparticle
distance R � 10−5 cm.

In this work, some results from investigations into the collective behaviour of such systems
are reported. We focused on experimental and theoretical investigations of the multistability
of 2D lattices with rectangular unit cells.

2. Experiment

Two-dimensional lattices of nanosize magnetic particles were formed by electron-beam
lithography from permalloy films (Ni3Fe) laser deposited on a substrate. The patterns were
produced using C60 fullerene films as negative electron resists and Ti films as transmitting
layers. In this way it is possible to form 2D lattices consisting of cylinder-shaped particles
with diameters of 15 to 100 nm and height equal to the thickness of the original (Ni3Fe)
film (figure 1). The magnetic properties of the sample were studied using a differential
scheme comprising two semiconductor (InSb) Hall sensors with common potential contacts

Figure 1. A SEM image of a part of a sample. The particles
form a lattice with a rectangular unit cell, 90 × 180 nm.
The particles, 40 nm in diameter and 45 nm high, are
visible against the background of the 10 nm roughness of
the sublayer.
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and independent current contacts [4]. The dimensions of the Hall cross of the sensors was
50 × 100 µm, the thickness 10 µm. The system under study was produced in the working
zone of a sensor. The method developed can be used to measure the magnetic field component
perpendicular to the sensor plane over a wide temperature range.

Figures 2, 3 and 4 show the Hall signals for a sample magnetized at different orientations
of the external magnetic field and T = 4.2 K. The external field direction is characterized by
two angles, θ and φ, where θ is the angle measured from the normal to the sample and φ is the
azimuthal angle measured from the axis directed parallel to the particle chains oriented along
the short side of the elementary rectangular cell. The dependence of the magnetization curves
on the field orientation relative to the lattice axes cannot be interpreted in terms of individual
particle properties and is a manifestation of the collective behaviour of the particles. Note that
the magnetization in the geometries of figures 3 and 4 is a remanent magnetization. In addition,
fundamental changes in the magnetization curve of a rectangular-unit-cell sample occur when
the sample temperature is raised to 77 K (figure 4). This indicates that thermal fluctuations
play a significant role in the system, since the Tc of bulk permalloy is 885 K � 77 K.
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Figure 2. The Hall signal in a magnetic field with
θ = 45◦, φ = 0◦.

Figure 3. The Hall signal in a magnetic field with
θ = 45◦, φ = 90◦.
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Figure 4. Changes in the Hall signal with temperature:
4.2 K (broken curves) and 77 K (full curves). H is directed
at θ = 0◦.
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Of no less interest is the Hall signal obtained with magnetization directed along the shorter
side of the elementary rectangle (which corresponds to the easy-axis direction) (figure 5). It is
significant that the magnetic susceptibility depends on the direction in which the magnetic
field is changed. The special feature of the magnetic hysteresis obtained is as follows.
With increasing external magnetic field, the magnetization follows the lower curve, and with
decreasing field, the upper one, irrespective of the initial conditions. If the sign of the derivative
of the external field is changed to the opposite one, the system passes from one magnetization
curve to the other. So, the system is multistable, i.e. it has a number of metastable states, since
different magnetization values may correspond to the same external fields. The following
sections of this article are devoted to a theoretical investigation of the magnetization process of
a rectangular dipole lattice in a magnetic field directed along the short side of the elementary
rectangle.
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Figure 5. The Hall signal versus the external magnetic field directed along θ = 90◦, φ = 0◦.

3. Numerical simulations

To better understand the magnetization process, we provide a numerical simulation of a model
system in the form of a bound 2D rectangular lattice of magnetic dipoles. The mechanisms
of the reversal of infinite dipole lattices at T = 0 were analysed in detail in [5, 6] and it was
shown that two modes are possible, depending on the lattice parameters: either by coherent
rotation or by antiferromagnetic fanning. In this case the effective antiferromagnetic interaction
between the neighbouring chains is weak (the integral dipole interaction between chains decays
exponentially) and the states with arbitrary orientations of magnetization in the neighbouring
chains are good multistable states. In a bound dipole system, the magnetostatic interaction
between dipole chains is due to the magnetic charges on their edges [7]. Owing to the fact that
the interchain interaction is slowly decaying (∼1/r3, r � L; r is the distance between the
chains and L is their length) and there are thermal fluctuations (T �= 0), other reversal modes
are possible [8]. To examine these mechanisms, a system of the classical dipoles (up to 1000
dipoles) on a rectangular lattice was numerically simulated by solving stochastic Landau–
Lifshitz equations with relaxation. These numerical methods are well evaluated and widely
used (see, e.g., [9]). The main feature of the reversal process is that it occurs via successive
reversals of separate dipole chains. It is the sequence of the multistable states of the system that
gives rise to steps in the magnetization curve (figure 6). After a reversal of the next chain occurs
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Figure 6. Magnetization versus external field directed along the dipole chains for 32 × 6 dipoles.
The horizontal line shows one of the possible transitions between the magnetization curves.
T = 0.1M2/a3 (T is the temperature, M the magnetic moment of the dipole, a the short side
of the 1:2 elementary rectangle).

with increasing external field, the effective field affecting other dipole chains decreases owing
to the effective antiferromagnetic character of the dipole interaction, and further increase of
the field is needed to continue the reversal process. The number of steps exactly corresponds
to the number of dipole chains in the system. The difference in step width is a consequence of
the long-range character of the interchain interaction.

Another interesting feature is the following. If during the magnetization process we stop
changing the external field and start to change it in the opposite direction, the magnetization
itself does not change while we pass through the entire hysteresis loop. The number of such
possible transitions corresponds to the number of steps on the magnetization curve. While
being magnetized, the system goes from one metastable state to another. The width of the
transitions from the left-hand magnetization curve to the right-hand one corresponds to the
stability region of a definite metastable state. To make this state unstable, we must change the
external field to one that is beyond these values.

The most interesting form of the magnetization curve was observed for a system of finite-
length dipole chains with a periodic boundary condition in the direction perpendicular to the
chains (figure 7). In this case the edge of the hysteresis loop has a self-similar character
(thinner steps lie between the thicker ones). A similar behaviour, known for a system of chains
of absorbed particles with mutual repulsion (i.e. antiferromagnetic interaction) between them
[10], is named the ‘devil’s staircase’. To gain insight into the behaviour of the magnetic system
in our case, the following simple model was solved for the system in question: a system was
considered of 2N (with N → ∞) dipole chains with an antiferromagnetic interaction between
them, represented in general form as

E = JM(r1)M(r2)/|r1 − r2|p.

For the dipole interaction, J = 1, p = 3, M is the total magnetic moment of a chain.
The magnetization reversal of an isolated dipole chain depends on its coercivity, considered
to be same for the different chains. Reversal in the field aligned with the easy axis
was examined analytically. The magnetization reversal has its onset at the external field
H1 = Ha − 2JMζ(p)/ap and terminates at H2 = Ha + 2JMζ(p)/ap, where Ha is the
coercive field of an isolated dipole chain and 2ζ(p) (ζ(p) = ∑∞

n=1 1/np) is the field induced
at the dipole chain by all other dipole chains of the system in the fully magnetized state and
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a is the interchain distance. The magnetization curves have self-similar character, like that
numerically calculated and shown in figure 7. In this case, the step width depends on the
magnetization value:

�Hk = 2p − 2

2kp−2
ζ(p)

JM

ap

where k = 1, 2, 3, . . .. The number of steps with this width is Nk = 2k−1 and the corresponding
magnetization values are M = m/2k−1 − 1, m = 1, 3, 5, . . . , 2k − 1. The sum of all step
widths is exactly the same as the whole inclination width of the magnetization curve, equal to
4(JM/ap)ζ(p). In fact,

�H =
∞∑

k=1

Nk �Hk = 2(2p − 2)
2(2p − 2)JM

ap
ζ(p)

∞∑

k=1

1

2k(p−1)
= 4

JM

ap
ζ(p).
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Figure 7. The edge of the hysteresis loop for a system of 16 dipole chains with 5 dipoles in each
chain. The elementary rectangle is 1:2. T = 0.05M2/a3.

4. Discussion

So, we have obtained some experimental results concerning the collective behaviour of the
system. Some of them (effective anisotropy of the system due to dipole interaction) are
quite understandable. Another result, namely the existence of a remanent magnetization in
the magnetization perpendicular to the easy axis, is unexpected. Nevertheless, this effect was
observed for a number of samples. Such a behaviour is likely to be associated with the formation
of nonuniform states in the system of interest. This hypothesis requires further experimental
and theoretical verification. As we do not quite understand the nature of this effect, its changing
with the temperature (figure 4) cannot be taken as a sign of the supermagnetic transition in the
system, but it indicates a role of the fluctuations in the system. The question of whether or not
this system undergoes a transition to a superparamagnetic state can be solved by investigating
the system further.

Numerical simulations fail to give good correspondence with the experiment, but they are
of interest in their own right. It was shown that the interaction in the system of magnetic dipoles
on a rectangular lattice must lead to the appearance of steps in the magnetization curve. The
steps in the ideal system are self-similar. These steps cannot be detected in experiment as yet,
owing to their small width. Nevertheless, the multistability of the system (transitions from the
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left-hand side of the hysteresis loop to the right-hand one) were observed both experimentally
and in numerical simulations. This leads us to maintain that, in the experimental samples, the
magnetization process in the easy direction occurs by successive magnetization reversals of
the particle chains.
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